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Abstract

This paper outlines a numerical method called the Bernstein operational matrix of derivative
(BOMD) of order two and order three with the approach of the Chebyshev collocation tech-
nique to solve boundary value problems (BVP). BOMD with suitable collocation points is im-
plemented to solve the BVP using the linear combination of Bernstein polynomials with un-
known coefficients to approximate the solutions. The derivatives featured in the problem sets
will be approximated by utilizing the matrix. The subsequent examination involves a mathe-
matical analysis of the proposed method, including evaluating its order, absolute error metrics
and comparative assessments with alternative methodologies. Four problems involving linear
and non-linear equations and systems, along with practical real-world problems, are addressed
to assess the reliability of the proposed method.
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1 Introduction

Boundary value problems (BVP) are the mathematical models in various real-world problems
[12] extensively investigated in a wide range of studies. Some real-world problems include hydro-
dynamics [23], wave propagation [16] and in the theory of elastic stability [7]. A BVP refers to a
set of differential equations (DE) for which solutions are designated at multiple points [12]. The
solutions of BVP can be determined by using the exact solutions of the problems. However, not
all BVP acquire the exact solutions. Therefore, the solutions can be computed using approximate
solutions with various numerical methods.

BVP has been arising in various aspects of our lives to the extent that they are nearly unavoid-
able [12]. There are many studies on various numerical schemes, such as finite difference method
[4] and forward time-centered space scheme to solve BVP. However, it is essential to point out that
most research published to date concerning exact and numerical solutions of DE are devoted to
the initial value problems or BVP for a specific case. Therefore, this research proposes an effective
and simple operational method for the solution of equations and systems of linear and non-linear
BVP.

In previous studies, researchers have employed different types of operational matrices and
collocation methods to solve various BVP. Since 2013, the Bernoulli [24, 21, 30] and Legendre
[25, 20] (matrix and collocation) have been used to solve non-linear DE and multi-Pantograph
delay BVP. Other numerical methods such as Fully Jacobi-Galerkin [8] and Chebyshev Petrov-
Galerkin [28] are also used to solve many types of time-fractional equations such as heat equation
[29], diffusion equation [15], sub-diffusion equation [9] and KdV-Burgers’ equation [27].

A method based on Bernstein operational matrix (BOM) of integration addresses linear time-
varying systems described by DE and determines the inverse Laplace transform of specific func-
tions [14]. Some of the problems include variable order fractional optimal control problems [10],
linear and non-linear delay DE [2] and time-fractional order telegraph equations [1].

By reviewing the solution techniques employed in previous studies, this study intends to rec-
ognize the importance and challenges of constructing new numerical methods for solving BVP.
Past studies in this field had focused on single equation of BVP problems. However, there is less
attention on the systems of BVP. Some algorithms are complicated and use plenty of CPU time
to compute. The gaps in previous studies have shown that the numerical methods for BVP is ad-
vancing in the field. Therefore, this study attempts to provide a more effective, simple and fast
numerical algorithms for solving equations of BVP and systems of equations of BVP.

This paper applies the Bernstein operational matrix of derivative (BOMD) method to solve
the BVP. Numerical results are compared with those obtained using other iterative methods from
previous research as a test of the efficiency of the proposedmethod. The advantage of this method
is by determining the approximate solutions of non-linear equations for which exact solutions
cannot be obtained.

The following is the structure of this paper. Section 2 deals with the proposed method deriva-
tion, namely the BOMDmethod constructed by implementingBernstein interpolation polynomial.
The application of the method in solving both linear and non-linear equations and systems, along
with a real-world problem is discussed in Section 3. Section 4 presents the concluding remarks
and recommendations for future works.
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2 Methodology

2.1 Bernstein polynomials

Thenth degree of Bernstein basis polynomials asmentioned in [11, 19] is defined on the interval
[0, 1] as

Bn
i (x) =

(
n
i

)
xi(1− x)n−1, 0 ≤ i ≤ n. (1)

Using a recursive definition [18], Bernstein polynomials over [0, 1] can be generated such that

Bn
i (x) = (1− x)Bn−1

i (x) + xBn−1
i−1 (x), (2)

where Bn−1
−1 (x) = 0 and Bn−1

n (x) = 0. Any polynomial function of degree n can be expressed by
the linear combination of the basis functions

y(x) =

n∑
i=0

CiB
n
i (x) = CTB(x), n ≥ 1, (3)

for equation, and for systems of equations it can be defined as

yj,n(x) = c0,jb
n
0 (x) + c1,jb

n
1 (x) + . . .+ cn,jb

n
n(x) = Cj

TB(x), n ≥ 1, j = 1, 2. (4)

C is the coefficients vector and B(x) denote the Bernstein vector, where

CT = [c0, c1, c2, . . . , cn] , (5)

and

B(x) = [bn0 (x), b
n
1 (x), b

n
2 (x), . . . , b

n
n(x)]

T
. (6)

Due to its numerical stability, the Bernstein polynomials are helpful in the practical computations
of numerical solutions [6]. Two fundamental properties of the Bernstein polynomials are the pos-
itivity and the partition of unity for all real x in the interval [0, 1], that is

∑n
i=0 B

n
i (x) = 1.

2.2 Bernstein operational matrix of derivatives

This section derives the explicit formula of the BOMD of the nth degree. Suppose that D is an
(n×1)+(n×1) order of operational matrix of derivative [26], then theB(x) derivatives is written
as

d

dx
B(x) = D(1)B(x). (7)

From [26], D(1) is specified as D(1) = AHB̂ and

Ai+1 =

[ repeated i times︷ ︸︸ ︷
0, 0, . . . , 0 , (−1)0

(
n
i

)(
n− i
0

)
, (−1)1

(
n
i

)(
n− i
1

)
,

. . . , (−1)n−i

(
n
i

)(
n− i
n− i

)]
,

(8)
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H =


0 0 0 . . . 0
1 0 0 . . . 0
0 2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . n


(n+1)×(n)

, B̂ =


A−1

[1]

A−1
[2]
...

A−1
[n]


(n)×(n+1)

,

where A−1
[k] represents the k

th row of A−1, for k = 1, 2, . . . , n.

2.3 Generalized Bernstein operational matrix of derivatives

The generalized nth order of BOMD is given by [18]:

dn

dxn
B(x) =

(
D(1)

)n
B(x), n = 1, 2, . . . . (9)

Order one did not yield accurate results due to a single term present in the equation; hence, it was
not applied in the study. For simplicity, the step for order one is omitted and only the generaliza-
tions for orders two and three are shown, as these are the orders applied in this study.

For n = 2, by using Equation (6) yields

B(x) =
[
b20(x), b

2
1(x), b

2
2(x)

]
,

where

b20(x) =

(
2
0

)
x0(1− x)2 = (1− x)2,

b21(x) =

(
2
1

)
x1(1− x)1 = 2x(1− x),

b22(x) =

(
2
2

)
x2(1− x)0 = x2.

Hence,

B(x) =

 (1− x)2

2x(1− x)
x2

 .

Next, to find the derivative D(1), the following matrices are derived from Equation (8):

A =

1 −2 1
0 2 −2
0 0 1


3×3

, H =

0 0
1 0
0 2


3×2

,

A−1 =


1 1 1

0
1

2
1

0 0 1


3×3

, B̂ =

(
A−1

[1]

A−1
[2]

)
=

(
1 1 1

0
1

2
1

)
2×3

.

By using the D(1) = AHB̂, derivative matrix for order two is given by1 −2 1
0 2 −2
0 0 1

0 0
1 0
0 2

(1 1 1

0
1

2
1

)
=

−2 −1 0
2 0 −2
0 1 2

 .
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For n = 3, by using Equation (6) yields

B(x) =
[
b30(x), b

3
1(x), b

3
2(x), b

3
3(x)

]
,

where

b30(x) =

(
3
0

)
x0(1− x)3 = (1− x)3,

b31(x) =

(
3
1

)
x1(1− x)2 = 3x(1− x)2,

b32(x) =

(
3
2

)
x2(1− x)1 = 3x2(1− x),

b33(x) =

(
3
3

)
x3(1− x)0 = x3.

Hence,

B(x) =


(1− x)3

3x(1− x)2

3x2(1− x)
x3

 .

Next, to find the derivative D(1), the following matrices are derived from Equation (8):

A =


1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1


4×4

, H =


0 0 0
1 0 0
0 2 0
0 0 3


4×3

,

A−1 =


1 1 1 1

0
1

3

2

3
1

0 0
1

3
1

0 0 0 1


4×4

, B̂ =


A−1

[1]

A−1
[2]

A−1
[3]

 =


1 1 1 1

0
1

3

2

3
1

0 0
1

3
1


3×4

.

By using the D(1) = AHB̂, derivative matrix for order three is given by
1 −3 3 −1
0 3 −6 3
0 0 3 −3
0 0 0 1



0 0 0
1 0 0
0 2 0
0 0 3



1 1 1 1

0
1

3

2

3
1

0 0
1

3
1

 =


−3 −1 0 0
3 −1 −2 0
0 2 1 −3
0 0 1 3

 .

From Equation (3) and Equation (9), the following equations are produced:

y(x) =

n∑
i=0

cib
n
i (x) = CTB(x).

Thus,

Dy(x) = CTD1B(x),

D2y(x) = CTD2B(x). (10)
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2.4 Collocation point

To get the solution of y(x), the equation problem is collocated at n suitable points. The colloca-
tion points used in this study are the roots of Chebyshev polynomials. After testing with various
collocating nodes, it is observed that this collocating technique yielded the best result. The roots
of Chebyshev polynomials are given by [3]:

xi =
1

2
+

1

2
cos

(
(2i+ 1)π

2n

)
, i = 0, 1, . . . , n− 1. (11)

A set of algebraic equations are produced from Equation (10) and Equation (11). By solving
the unknown coefficient vector CT = [c0, c1, c2, . . . , cn], the numerical solution of function y(x) is
obtained.

3 Numerical Results and Discussion

This section compares the proposedmethod to the exact solution and other existing numerical
methods to test its accuracy and efficiency. Four numerical examples and a real-world problem are
used to evaluate the method. The methods developed in Section 2 for the Bernstein polynomial of
order n = 2 and n = 3 will be applied on the problems. The algebraic manipulations are done in
WolframMathematica Version 13.0.1.0 running on AMD Ryzen 5 6600H CPU 3.30GHz processor,
8GB RAM, with the digits rounded off to five decimal places for all tables of numerical values.

The Weierstrass approximation theorem [17] together with the Bernstein polynomials [22]
are used to show the convergence of the proposed method, which leads the desired choice of
parameter.

Theorem 3.1. Suppose y(x) is a continuous function on the interval [0, 1] and

Bn(y, x) =

n∑
i=0

Bi
n(x)y

(
i

n

)
, (12)

is the Bernstein polynomial of degree n in terms of Bernstein basis, then Bn(y, x) converges uniformly to
y(x).

The proof is omitted in this work. Readers may go through the work [22] for deeper under-
standing.

3.1 Problem 1: Application to linear equation

Consider the following linear singular two-point BVP as in [13]:

y′′ +
1

x
y′ + y =

5

4
+

x2

16
, (13)

subject to the boundary conditions

y′(0) = 0, y(1) =
17

16
. (14)
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Equation (13) has the exact solution

y(x) = 1 + x2/16.

Applying the method described in Section 2 for n = 2 yields

y(x) = c0b
2
0(x) + c1b

2
1(x) + c2b

2
2(x) = CTB(x).

By using y(x) = CTB(x), y′(x) = CTDB(x) and y′′(x) = CTD2B(x), the following equation is
obtained:

CTD2B(x) +
1

x
CTDB(x) + CTB(x) =

5

4
+

x2

16
. (15)

By collocating Equation (15) at the 2 collocation points for n = 2 given by

x1 =
1

2
+

1

2
√
2
, x2 =

1

2
− 1

2
√
2
,

obtained by using Equation (11) resulted in
(2 + 31

√
2)c0 − 2(30 + 31

√
2)c1 + (74 + 39

√
2)c2

8(2 +
√
2)

= 1.2955,

(−2 + 31
√
2)c0 + (60− 62

√
2)c1 + (−74 + 39

√
2)c2

8(−2 +
√
2)

= 1.2513.

(16)

Applying the boundary conditions from Equation (14) yields

y′(0) = CTDB(0) = 0, which implies c1 = c0,

y(1) = CTB(1) =
17

16
, which implies c2 =

17

16
= 1.0625.

Substituting the values c0 and c2 in Equation (16), c1 = c0 = 1 are obtained. Therefore, the
coefficient values are

c0 = 1, c1 = 1, c2 =
17

16
.

Hence, the equation obtained is given by

y(x) =

(
1 1

17

16

) (1− x)
2

2x(1− x)
x2

 = 1 +
x2

16
,

which is the exact solution.

Table 1 lists the solution by applying the present method of order two, the exact solution and
its absolute errors for different values of x ranging from [0, 1]. It is evident from Table 1 that the
suggested approach delivers remarkably precise and reliable results that match the exact solution.
It is also observed that the BOMDmethod produced more accurate results when compared to the
results of He’s VIM method for n = 2, as demonstrated in [13].

Figure 1 shows the curves of exact solutions, BOMD solutions for n = 2 and He’s VIMmethod
for n = 2. An observation of Figure 1 leads to the conclusion that the results obtained through the
present method are highly consistent with the exact solution. The lines appeared to be overlap-
ping, indicating a very good approximation to the exact solution. Figure 2 also shows the absolute
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error comparison between the proposed BOMDmethod and the comparison toHe’s VIMmethod.
Since there is no error for the BOMD method, the graphical line does not appear in this example
when plotted in loglog format. Therefore, we conclude that the method is applicable and efficient
for solving linear equations.

Table 1: Numerical results by using BOMD n = 2 and comparison with He’s VIM n = 2 for Problem 1.

x Exact BOMD n = 2 He’s VIM n = 2 [13]
y(x) y(x) Error y(x) Error

0.1 1.00063 1.00063 0. 1.00077 1.41369× 10−04

0.2 1.00250 1.00250 0. 1.00264 1.40303× 10−04

0.3 1.00563 1.00563 0. 1.00576 1.38473× 10−04

0.4 1.01000 1.01000 0. 1.01014 1.35667× 10−04

0.5 1.01563 1.01563 0. 1.01576 1.31309× 10−04

0.6 1.02250 1.02250 0. 1.02262 1.24193× 10−04

0.7 1.03063 1.03063 0. 1.03074 1.12128× 10−04

0.8 1.04000 1.04000 0. 1.04009 9.15102× 10−04

0.9 1.05063 1.05063 0. 1.05068 5.68122× 10−04

1.0 1.06250 1.06250 0. 1.06250 3.10862× 10−15

0.2 0.4 0.6 0.8 1.0
x

1.01

1.02

1.03

1.04

1.05

1.06

y(x)

Comparison between exact solution, BOMD n = 2

and He's VIM n = 2

Exact solution

BOMD n = 2

Figure 1: Graph comparison between exact solution, BOMD n = 2 and He’s VIM n = 2 for Problem 1.

0.2 0.5 1

x

9.0×10-5

1.0×10-4

1.1×10-4

1.2×10-4

1.3×10-4

1.4×10-4

Absolute Error

Graph of Absolute Error

Error BOMD n = 2

Error He's VIM n = 2

Figure 2: Graph of absolute error between BOMD n = 2 and He’s VIM n = 2 for Problem 1.
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3.2 Problem 2: Application to non-linear equation

Consider the following non-linear singular two-point BVP described by [22]:

−
(
x2y′

)′
= x2

(
−1 +

324

53
x+

54

53
x3 − 729

2809
x6 + y2

)
, 0 < x < 1, (17)

subject to the boundary conditions

y′(0) = 0, y(1) =
1

2
y

(
1

3

)
. (18)

Equation (17) has the exact solution y(x) = −27/53x3 + 1.

The order for this problems starts with n = 3, as our algorithm did not achieve a solutionwhen
n = 2. An extended study should be made to solve and overcome this limitation. The steps for
n = 2 are omitted for simplicity and we proceed to the following order.

Applying the method described in Section 2 for n = 3 yields

y(x) = c0b
3
0(x) + c1b

3
1(x) + c2b

3
2(x) = CTB(x).

By using y(x) = CTB(x), y′(x) = CTDB(x) and y′′(x) = CTD2B(x) and collocating Equa-
tion (17) at the 3 collocation points for n = 3 given by

x0 =
1

2
+

√
3

4
, x1 =

1

2
, x2 =

1

2
−

√
3

4
,

obtained by using Equation (11), resulted in



1

65536



(−97 + 56
√
3)c20 − 9c21 − 9(97 + 56

√
3)c22

+2c0

(
−6144

√
3 + 3(−7 + 4

√
3)c1 − 3c2

−(7 + 4
√
3)c3

)
−6c1

(
10240(2 +

√
3) + 3(7 + 4

√
3)c2

+(97 + 56
√
3)c3

)
+6c2

(
6144(12 + 7

√
3)− (1351 + 780

√
3)c3

)
+c3

(
−12288(26 + 15

√
3)− (18817 + 10864

√
3)c3

)


= 4.666,

3

2
(c1 − c3)−

1

256
(c0 + 3(c1 + c2) + c3)

2 = 0.54498,

1

65536



−((97 + 56
√
3)c20)− 9c21 + 9(−97 + 56

√
3)c22

+6(−1351 + 780
√
3)c2c3 + (−18817 + 10864

√
3)c23

−2c0

(
−6144

√
3 + 3(7 + 4

√
3)c1 + 3c2

+(7− 4
√
3)c3

)
+12288

(
5(−2 +

√
3)c1 + (36− 21

√
3)c2

+(−26 + 15
√
3)c3

)
+6c1

(
3(−7 + 4

√
3)c2

)
+
(
−97 + 56

√
3)c3

)


= −0.00265.

(19)

Applying the boundary conditions from Equation (18) yields

y′(0) = CTDB(0) = 0, which implies c1 = c0,

y(1) = CTB(1) =
1

2
y

(
1

3

)
, which implies c3 =

8c0
53

+
12c1
53

+
6c2
53

.
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Substituting the values c1, c3 in Equation (19) and solving the equations resulted in

c0 = 1, c2 = 1.

Therefore, the coefficient values are

c0 = 1, c1 = 1, c2 = 1 c3 =
26

53
.

Hence, the equation obtained is given by

y(x) =

(
1 1 1

26

53

)
(1− x)3

3x(1− x)2

3x2(1− x)
x3

 = 1− 27

53
x3,

which is the exact solution.

The approximate solution using the presented method of BOMDwith n = 3 is compared with
the exact solution and He’s VIM n = 3 in [22]. The comparison is shown graphically in Figure 3
and Table 2 provides a comprehensive presentation of the numerical outputs of the solutions at
varying values of x. Table 2 shows that the proposedmethod yields the exact result, as the absolute
error values are zeros. Therefore, it is concluded that the BOMD method for n = 3 has better
accuracy than He’s VIM method for this problem.

Figure 3 shows the curves of exact solutions and the BOMD solutions for n = 3. The proposed
method yields results that are identical to the exact solution and the two lines appear to be over-
lapping. Additionally, Figure 4 depicts the absolute error plot of the proposed approach. Similar
to previous problem 1, the graphical line does not appear since the error is zero.

No graphical representation for He’s VIM method for n = 3 is shown due to the absence of an
equation solution for the method provided in the literature. However, from the numerical values
in Table 2 and Figures 3 and 4 below, it can be observed that the absolute error value for the BOMD
method is lower than He’s VIM method. Hence, the proposed method is practical and efficient
for solving non-linear equations.

Table 2: Numerical results by using BOMD n = 3 and comparison with He’s VIM n = 3 for Problem 2.

x Error BOMD n = 3 He’s VIM n = 3 [22]
y(x) y(x) Error y(x) Error

0.1 0.99949 0.99949 0. 0.99956 6.4× 10−5

0.2 0.99592 0.99592 0. 0.99599 6.4× 10−5

0.3 0.98625 0.98625 0. 0.98631 6.2× 10−5

0.4 0.96740 0.96740 0. 0.96746 6.1× 10−5

0.5 0.93632 0.93632 0. 0.93638 5.9× 10−5

0.6 0.88996 0.88996 0. 0.89002 5.7× 10−5

0.7 0.82526 0.82526 0. 0.82532 5.4× 10−5

0.8 0.73917 0.73917 0. 0.73922 4.9× 10−5

0.9 0.62862 0.62862 0. 0.62867 4.2× 10−5

1.0 0.49057 0.49057 0. 0.49060 3.1× 10−5
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0.2 0.4 0.6 0.8 1.0
x

0.6

0.7

0.8

0.9

1.0

y[x]

Comparison between exact solution and BOMD n = 3

Exact solution

BOMD n

Figure 3: Graph comparison between exact solution and BOMD n = 3 for Problem 2.

0.2 0.5 1

x

0.5

1

2

Absolute Error

Graph of Absolute Error

Error BOMD

Figure 4: Graph of absolute error of BOMD n = 3 for Problem 2.

3.3 Problem 3: Application to linear system

Consider the following system of linear Ordinary Differential Equations (ODE) given by [3]:

y′1(x) = y1(x) + y2(x),

y′2(x) = −y1(x) + y2(x),
(20)

subject to the initial conditions

y1(0) = 0, y2(0) = 1, (21)

with exact solutions y1(x) = ex sin(x), y2(x) = ex cos(x).

By using the same step described in Section 2 for n = 2 and applying the boundary conditions
from Equation (21) yields

y1(0) = CT
1 B(0) = 0, which implies c0,1 = 0,

y2(0) = CT
2 B(0) = 1, which implies c0,2 = 1.
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Solving all the coefficients resulted in

c0,1 = 0, c0,2 = 1, c1,1 =
12

25
, c1,2 =

41

25
, c2,1 =

56

25
, c2,2 =

33

25
.

Hence, the equation solution is given by

(
y1,2(x)
y2,2(x)

)
=

(
c0,1 c1,1 c2,1
c0,2 c1,2 c2,2

) (1− x)
2

2x(1− x)

x2

 =


24x

25
+

32x2

25

1 +
32x

25
− 24x2

25

 .

Repeating the method for n = 3, the solution is given by

(
y1,2(x)
y2,2(x)

)
=

(
c0,1 c1,1 c2,1 c3,1
c0,2 c1,2 c2,2 c3,2

)
(1− x)3

3x(1− x)2

3x2(1− x)

x3

 =


1650x

1681
+

1920x2

1681
+

288x3

1681

1 +
1632x

1681
+

432x2

1681
− 1280x3

1681

 .

Table 3 and Table 4 show that the error for the proposed method for n = 2 is higher than
the Tau method [3]. To reduce the error for better accuracy, the order of the proposed method
is increased to n = 3. As the order of the proposed method increases, its absolute error tends to
decrease.

Figure 7 illustrates a comparison of exact solutions, BOMD solutions for n = 3 and the Tau
method. At the same time, Figure 8 presents a comparison of the proposed method’s absolute
error for n = 3 and the Tau method for y1(x) and y2(x), respectively. It can be observed from
Figure 5 that the line of BOMD for y2(x) does not overlap with and is diverging from the exact
solution. However, by increasing the order to three, the line is now overlapping with the exact
solution and no longer diverges, as shown in Figure 7.

Observe that the graph of absolute errors for the BOMDmethod is lower than the Tau method
and shows better accuracy than the BOMD of order two. A hypothesis is made that increasing
the proposed method’s order to n = 4 might yield even more accurate results with minor errors.
Therefore, the proposed method is applicable and efficient for solving linear systems.

Table 3: y1(x) comparison by using BOMD n = 2, BOMD n = 3 and Tau Method n = 2 for Problem 3.

x Exact BOMD n = 2 BOMD n = 3 Tau Method n = 2 [3]
y1(x) y1(x) Error y1(x) Error y1(x) Error

0.1 0.11033 0.10880 1.53290× 10−3 0.10975 5.84030× 10−4 0.10615 4.17914× 10−3

0.2 0.24266 0.24320 5.44731× 10−3 0.24337 7.14154× 10−4 0.24000 2.65527× 10−3

0.3 0.39891 0.40320 4.28945× 10−3 0.40189 2.97880× 10−3 0.40154 2.62791× 10−3

0.4 0.58094 0.58880 7.85610× 10−3 0.58634 5.39280× 10−3 0.59077 9.82533× 10−3

0.5 0.79044 0.80000 9.56092× 10−3 0.79774 7.30036× 10−3 0.80769 1.72532× 10−2

0.6 1.02880 1.03680 7.95433× 10−3 1.03713 8.27985× 10−3 1.05231 2.34620× 10−2

0.7 1.29730 1.29920 1.90489× 10−3 1.30552 8.22779× 10−3 1.32462 2.73203× 10−2

0.8 1.59650 1.58720 9.30534× 10−3 1.60396 7.45421× 10−3 1.62462 2.81100× 10−2

0.9 1.92670 1.90080 2.58733× 10−2 1.93346 6.79011× 10−3 1.95231 2.56344× 10−2

1.0 2.28740 2.24000 4.73553× 10−2 2.29506 7.70718× 10−3 2.30769 2.03370× 10−2

540



N. E. A. Wahab and M. Y. Misro Malaysian J. Math. Sci. 18(3): 529–551 (2024) 529 - 551

Table 4: y2(x) comparison by using BOMD n = 2, BOMD n = 3 and Tau Method n = 2 for Problem 3.

x Exact BOMD n = 2 BOMD n = 3 Tau Method n = 2 [3]
y2(x) y2(x) Error y2(x) Error y2(x) Error

0.1 1.09965 1.11840 1.87503× 10−2 1.09889 7.56151× 10−4 1.12923 2.95811× 10−2

0.2 1.19706 1.21760 2.05440× 10−2 1.19836 1.30210× 10−3 1.24000 4.29440× 10−2

0.3 1.28957 1.29760 8.03063× 10−3 1.29383 4.25573× 10−3 1.33231 4.27383× 10−2

0.4 1.37406 1.35840 1.56615× 10−2 1.38073 6.66422× 10−3 1.40615 3.20923× 10−2

0.5 1.44689 1.40000 4.68890× 10−2 1.45449 7.60234× 10−3 1.46154 1.46494× 10−2

0.6 1.50386 1.42240 8.14595× 10−2 1.51055 6.69370× 10−3 1.49846 5.39800× 10−2

0.7 1.54020 1.42560 1.14603× 10−1 1.54434 4.13963× 10−3 1.51692 2.32799× 10−2

0.8 1.55055 1.40960 1.40949× 10−1 1.55129 7.41601× 10−4 1.51692 3.36262× 10−2

0.9 1.52891 1.37440 1.54514× 10−1 1.52683 2.08454× 10−3 1.49846 3.04523× 10−2

1.0 1.46869 1.32000 1.48694× 10−1 1.46639 2.30489× 10−3 1.46154 7.15548× 10−3
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Exact y1(x)

BOMD y1(x)

Tau Method y1(x)
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Tau Method y2(

Figure 5: Graph comparison between exact solution, BOMD n = 2 and Tau method n = 2 for Problem 3.
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Figure 6: Graph of absolute error of BOMD n = 2 and Tau Method n = 2 for Problem 3.
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Figure 7: Graph comparison between exact solution, BOMD n = 3 and Tau method n = 2 for Problem 3.
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Figure 8: Graph of absolute error of BOMD n = 3 and Tau method n = 2 for Problem 3.

3.4 Problem 4: Application to non-linear system

Consider the following stiff system of non-linear ODE given by [3]:

y′1(x) = −1002y1(x) + 1000y22(x),

y′2(x) = y1(x)− y2(x)− y22(x),
(22)

subject to the initial conditions

y1(0) = 1, y2(0) = 1, (23)

and the exact solutions y1(x) = e−2x, y2(x) = e−x.

By using the same step described in the previous section for n = 2 and applying the initial
conditions from Equation (23) yields

y1(0) = CT
1 B(0) = 1, which implies c0,1 = 1,

y2(0) = CT
2 B(0) = 1, which implies c0,2 = 1.
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Solving the equations, the values of the coefficients yields are

c0,1 = 1, c0,2 = 1, c1,1 = 0.072316,

c1,2 = 0.520046, c2,1 = 0.180287, c2,2 = 0.359918.

Hence, the equation solution is given by

(
y1,2(x)
y2,2(x)

)
=

(
c0,1 c1,1 c2,1
c0,2 c1,2 c2,2

) (1− x)
2

2x(1− x)
x2

 ≈
(

1− 1.855368x+ 1.035656x2

1− 0.959908x+ 0.319825x2

)
.

Repeating the method for n = 3, the equation solution is given by

(
y1,2(x)
y2,2(x)

)
=

(
c0,1 c1,1 c2,1 c3,1
c0,2 c1,2 c2,2 c3,2

)
(1− x)3

3x(1− x)2

3x2(1− x)
x3


≈
(

1− 1.983931x+ 1.759629x2 − 0.647224x3

1− 0.996722x+ 0.468935x2 − 0.104127x3

)
.

Table 5 and Table 6 exhibit a comparison between the absolute errors of the present method
and the Tau method. The error for the proposed method for n = 2 is observed to be higher than
the results of the Tau method. Figure 9 illustrates the comparison of the curves representing the
analytical solutions and those generated through the BOMD method for n = 2. The order is
increased to n = 3 to improve the accuracy.

From Table 5 and Table 6, the proposed method for n = 3 produces excellent results with
smaller errors compared to the previous order. It can be observed from Figure 9 that the line of
BOMD for y2(x) does not overlap and is diverging from the exact solution. Similar to the previous
example, by increasing the order to three, the line of BOMD now overlaps with the exact solution
and no longer diverges, as shown in Figure 11. Therefore, our previous hypothesis on the order of
the proposed method is directly proportional to the accuracy of the solution remains true in this
problem.

Table 5: y1(x) comparison by using BOMD n = 2, BOMD n = 3 and Tau Method n = 2 for Problem 4.

x Exact BOMD n = 2 BOMD n = 3 Tau Method n = 2 [3]
y1(x) y1(x) Error y1(x) Error y1(x) Error

0.1 0.81873 0.82482 6.08901× 10−3 0.81856 1.74787× 10−4 0.83430 1.55692× 10−2

0.2 0.67032 0.67035 3.25940× 10−5 0.66842 1.89888× 10−3 0.68720 1.68800× 10−2

0.3 0.54881 0.53660 1.22130× 10−2 0.54571 3.09937× 10−3 0.55870 9.88836× 10−3

0.4 0.44933 0.42356 2.57712× 10−2 0.44655 2.78306× 10−3 0.44880 5.28964× 10−4

0.5 0.36788 0.33123 3.66494× 10−2 0.36704 8.40691× 10−4 0.35750 1.03794× 10−2

0.6 0.30119 0.25962 4.15789× 10−2 0.30331 2.11324× 10−3 0.28480 1.63942× 10−2

0.7 0.24660 0.20871 3.78831× 10−2 0.25147 4.87171× 10−3 0.23070 1.58970× 10−2

0.8 0.20190 0.17853 2.33711× 10−2 0.20764 5.74255× 10−3 0.19520 6.69652× 10−3

0.9 0.16530 0.16905 3.75127× 10−3 0.16794 2.63641× 10−3 0.17830 1.30011× 10−2

1.0 0.13534 0.18029 4.49527× 10−2 0.12847 6.86128× 10−3 0.18000 4.46647× 10−2
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Table 6: y2(x) comparison by using BOMD n = 2, BOMD n = 3 and Tau Method n = 2 for Problem 4.

x Exact BOMD n = 2 BOMD n = 3 Tau Method n = 2 [3]
y2(x) y2(x) Error y2(x) Error y2(x) Error

0.1 0.90484 0.90721 2.37003× 10−3 0.90491 7.56050× 10−5 0.90810 3.26258× 10−3

0.2 0.81873 0.82081 2.08065× 10−3 0.81858 1.50769× 10−4 0.82240 3.66925× 10−3

0.3 0.74082 0.74081 6.37068× 10−6 0.74038 4.42100× 10−4 0.74290 2.08178× 10−3

0.4 0.67032 0.66721 3.11125× 10−3 0.66968 6.43374× 10−4 0.66960 7.20046× 10−4

0.5 0.60653 0.60000 6.52841× 10−3 0.60586 6.73785× 10−4 0.60250 4.03066× 10−3

0.6 0.54881 0.53919 9.61944× 10−3 0.54829 5.19668× 10−4 0.54160 7.21164× 10−3

0.7 0.49659 0.48478 1.18067× 10−2 0.49636 2.28115× 10−4 0.48690 9.68530× 10−3

0.8 0.44933 0.43676 1.25674× 10−2 0.44943 9.88119× 10−5 0.43840 1.09290× 10−2

0.9 0.40657 0.39514 1.14286× 10−2 0.40688 3.09307× 10−4 0.39610 1.04697× 10−2

1.0 0.36788 0.35992 7.96244× 10−3 0.36809 2.06559× 10−4 0.36000 7.87944× 10−3
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Figure 9: Graph comparison between exact solution, BOMD n = 2 and Tau method n = 2 for Problem 4.
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Figure 10: Graph of absolute error of BOMD n = 2 and Tau Method n = 2 for Problem 4.

The plot of absolute errors of the proposed method for n = 3 and the comparison method is
also shown in Figure 12. Based on the data presented in Figure 12, it can be observed that the
outcome of the proposed method correspond to the analytical solution, thereby making it more
relevant and effective when dealing with non-linear systems.
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Figure 11: Graph comparison between exact solution, BOMD n = 3 and Tau method n = 2 for Problem 4.

0.2 0.5 1

x

10-6

10-5

10-4

0.001

0.010

Absolute Error

Graph of Absolute Error between BOMD n = 3

and Tau Method n = 2

Error BOMD y1(x)

Error Tau Method y1(x)

Error BOMD y2(x)

Error Tau Method y2(x

Figure 12: Graph of absolute error of BOMD n = 3 and Tau method n = 2 for Problem 4.

3.5 Problem 5: Application to real-world problem

Consider the following problem described by [5]:

P ′(t) = 0.0009906(1000− P (t))P (t), (24)

subject to the condition

P (0) = 1. (25)

Equation (24) has the solution given by P (t) = 1000/1 + 999e-0.9906t.

By applying the method developed for n = 2 and applying the boundary conditions from
Equation (25) yields

P (0) = CTB(0) = 0, which implies c0 = 1.

Solving all the coefficients, the equation solution is thus given by

P (t) = 1 + 0.883566t+ 0.861068t2.
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Repeating the method for n = 3, the solution is given by

P (t) = 1 + 0.997885t+ 0.418762t2 + 0.270301t3.

Table 7 shows the numerical results of the approximate solution at interval [0, 1], along with
the given solution and the absolute error of the BOMDmethod. Figure 13 compares the given and
the approximate solutions yielded using the proposed method of order two. Figure 14 shows the
absolute error of the solution. Next, the BOMD of order three is applied to measure the accuracy
of the suggested approach as the order increases.

Table 7: Numerical results by using BOMD n = 2, BOMD n = 3 and comparison with given solution for Problem 5.

t Given BOMD n = 2 BOMD n = 3
P (t) P (t) Error P (t) Error

0.1 1.10402 1.09697 7.05030× 10−3 1.10425 2.28879× 10−4

0.2 1.21884 1.21116 7.68570× 10−3 1.21849 3.51654× 10−4

0.3 1.34559 1.34257 3.02600× 10−3 1.34435 1.23959× 10−3

0.4 1.48550 1.49120 5.69360× 10−3 1.48346 2.04834× 10−3

0.5 1.63994 1.65705 1.71107× 10−2 1.63742 2.51846× 10−3

0.6 1.81040 1.84012 2.97229× 10−2 1.80787 2.53060× 10−3

0.7 1.99855 2.04042 4.18734× 10−2 1.99643 2.11969× 10−3

0.8 2.20620 2.25794 5.17357× 10−2 2.20471 1.49054× 10−3

0.9 2.43538 2.49267 5.72961× 10−2 2.43434 1.03494× 10−3

1.0 2.68830 2.74463 5.63352× 10−2 2.68695 1.35045× 10−3

By comparing the graph of Figure 13 and Figure 15, it is observed that the lines tend to be closer
to the exact solution (overlapping) when the order of the method is higher. Figure 16 shows the
absolute error of the solution for order three. Figure 17 shows that the absolute error for BOMD
of order three is much lower than for order two. Thus, our hypothesis of higher accuracy as order
increases stands. Therefore, the proposed method is applicable in solving real-world problems.
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Figure 13: Graph comparison between given solution and BOMD n = 2 for Problem 5.
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Figure 14: Graph of absolute error of BOMD n = 2 for Problem 5.
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Figure 16: Graph of absolute error of BOMD n = 3 for Problem 5.
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Figure 17: Graph of comparison between absolute error of BOMD n = 2 and BOMD n = 3 for Problem 5.

4 Conclusions

The accuracy of the proposedmethod is validated by examining and comparing four numerical
examples and one real-world application with the exact solutions. An analysis of the proposed
method as a solution to the four problems revealed that it is able to produce a more accurate and
precise outcome than He’s VIM and Tau methods by calculating the absolute error.

The results show that as the order of themethod increased, the errors decreased; hence, the ac-
curacy is improved. These results led us to conclude that the proposed method effectively solved
both linear and non-linear equations and systems of two-point BVP, and is applicable in solving
real-world problems. The computer program for the method is simple and easy to modify ac-
cording to equation problems, making it more cost-effective. In conclusion, the BOMD method
is a more efficient approach to implement in solving BVP and it yields a highly satisfactory result
with only a small number of bases.

It is important to stress that the proposed method produced n equations as the number of col-
location points used in solving the coefficient and finding the solution, which means the higher
order of the proposed method requires higher cost and time in running the simulations. In some
cases, for a particular value of n, the method does not manage to yield the coefficients. For fu-
ture works, new approaches shall be explored to reduce computational work and overcome this
shortcoming of the method, such as by deriving a new collocating point that suits the proposed
method. By using the best collocating point, it is expected that the solution will converge to its
exact solution in lesser time, therefore making it more efficient.
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